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Hi, I’m Adriene Hill and welcome back to Crash Course Statistics.

There’s something to be said for flexibility. It allows you to adapt to
new circumstances.

Like a Transformer is a truck, but it can also be an awesome
fighting robot. Today we’ll introduce you to one of the most flexible
statistical tools--the General Linear Model, or GLM. The GLM will
allow us to create many different models to help describe the world.

The first we’ll talk about is The Regression Model. INTRO General
Linear Models say that your data can be explained by two things:
your model, and some error: First, the model. It usually takes the
form Y = mx + b, or rather, Y = b + mx in most cases.

Say I want to predict the number of trick-or-treaters I’ll get this
Halloween by using enrollment numbers from the local middle
school. I have to make sure I have enough candy on hand. I expect
a baseline of 25 trick-or-treaters.

And then for every middle school student, I’ll increase the number
of trick-or-treaters I expect by 0.01. So this would be my model:
There were about 1,000 middle school students nearby last year, so
based on my model, I predicted that I’d get 35 trick-or-treaters. But
reality doesn’t always match predictions.

When Halloween came around, I got 42, which means that the error
in this case was 7. Now, error doesn’t mean that something’s
WRONG, per se. We call it error because it’s a deviation from our
model.

So the data isn’t wrong, the model is. And these errors can come
from many sources: like variables we didn’t account for in our
model-- including the candy-crazed kindergartners from the
elementary school--or just random variation Models allow us to
make inferences --whether it’s the number of kids on my doorstep
at Halloween, or the number of credit card frauds committed in a
year. General Linear Models take the information that data give us
and portion it out into two major parts: information that can be
accounted for by our model, and information that can’t be.

There’s many types of GLMS, one is Linear Regression. Which can
also provide a prediction for our data. But instead of predicting our
data using a categorical variable like we do in a t-test, we use a
continuous one.

For example, we can predict the number of likes a trending
YouTube video gets based on the number of comments that it has.
Here, the number of comments would be our input variable and the
number of likes our output variable. Our model will look something
like this: The first thing we want to do is plot our data from 100
videos: This allows us to check whether we think that the data is
best fit by a straight line, and look for outliers--those are points that
are really extreme compared to the rest of our data.

These two points look pretty far away from our data. So we need to
decide how to handle them. We covered outliers in a previous
episode, and the same rules apply here.

We’re trying to catch data that doesn’t belong. Since we can’t
always tell when that happened, we set a criteria for what an outlier
is, and stick to it. One reason that we’re concerned with outliers in
regression is that values that are really far away from the rest of our
data can have an undue influence on the regression line.

Without this extreme point, our line would look like this. But with it,
like this. That’s a lot of difference for one little point!

There’s a lot of different ways to decide, but in this case we’re

gonna leave them in. One of the assumptions that we make when
using linear regression, is that the relationship is linear. So if
there’s some other shape our data takes, we may want to look into
some other models.

This plot looks linear, so we’ll go ahead and fit our regression
model. Usually a computer is going to do this part for us, but we
want to show you how this line fits. A regression line is the straight
line that’s as close as possible to all the data points at once.

That means that it’s the one straight line that minimizes the sum of
the squared distance of each point to the line. The blue line is our
regression line. Its equation looks like this: This number--the y-
intercept--tells us how many likes we’d expect a trending video with
zero comments to have.

Often, the intercept might not make much sense. In this model, it’s
possible that you could have a video with 0 comments, but a video
with 0 comments and 9104 likes does seem to conflict with our
experience on YouTube. The slope, aka, the coefficient--tells us
how much our likes are determined by the number of comments.

Our coefficient here is about 6.5, which means that on average, an
increase in 1 comment is associated with an increase of about 6.5
likes. But There’s another part of the General Linear Model: the
error. Before we go any further, let’s take a look at these
errors--also called residuals.

The residual plot looks like this: And we can tell a lot by looking at
its shape. We want a pretty evenly spaced cloud of residuals.
Ideally, we don’t want them to be extreme in some areas and close
to 0 in others. It’s especially concerning if you can see a weird
pattern in your residuals like this: Which would indicate that the
error of your predictions is dependent on how big your predictor
variable value is. That would be like if our YouTube model was
pretty accurate at predicting the number of likes for videos with very
few comments, but was wildly inaccurate on videos with a lot of
comments.

So, now that we’ve looked at this error, This is where Statistical
tests come in. There are actually two common ways to do a Null
Hypothesis Significance test on a regression coefficient. Today
we’ll cover the F-test. The F-test, like the t-test, helps us quantify
how well we think our data fit a distribution, like the null distribution.
Remember, the general form of many test statistics is this: But I’m
going to make one small tweak to the wording of our general
formula to help us understand F-tests a little better. The null
hypothesis here is that there’s NO relationship between the
number of comments on a trending YouTube video and the number
of likes. IF that were true, we’d expect a kind of blob-y, amorphous-
cloud-looking scatter plot and a regression line with a slope of 0. It
would mean that the number of comments wouldn’t help us predict
the number of likes. We’d just predict the mean number of likes no
matter how many comments there were.

Back to our actual data. This blue line is our observed model. And
the red is the model we’d expect if the null hypothesis were true.
Let’s add some notation so it’s easier to read our formulas. Y-hat
looks like this, and it represents the predicted value for our outcome
variable--here it’s the predicted number of likes. Y-bar looks like
this, and it represents the mean value of likes in this sample. Taking
the squared difference between each data point and the mean line
tells us the total variation in our data set. This might look similar to
how we calculated variance, because it is. Variance is just this sum
of squared deviations--called the Sum of Squares Total--divided by
N. And we want to know how much of that total Variation is
accounted for by our regression model, and how much is just error.

That would allow us to follow the General Linear Model framework
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and explain our data with two things: the model’s prediction, and
error. We can look at the difference between our observed slope
coefficient--6.468--and the one we’d expect if there were no
relationship--0, for each point. And we’ll start here with this point:
The green line represents the difference between our observed
model--which is the blue line--and the model that would occur if the
null were true--which is the red line. And we can do this for EVERY
point in the data set. We want negative differences and positive
differences to count equally, so we square each difference so that
they’re all positive. Then we add them all up to get part of the
numerator of our F-statistic: The numerator has a special name in
statistics.

It’s called the Sums of Squares for Regression, or SSR for short.
Like the name suggests, this is the sum of the squared distances
between our regression model and the null model. Now we just
need a measure of average variation. We already found a measure
of the total variation in our sample data, the Total Sums of Squares.
And we calculated the variation that’s explained by our model. The
other portion of the variation should then represent the error, the
variation of data points around our model. Shown here in Orange.
The sum of these squared distances are called the Sums of
Squares for Error (SSE). If data points are close to the regression
line, then our model is pretty good at predicting outcome values like
likes on trending YouTube Videos. And so our SSE will be small. If
the data are far from the regression line, then our model isn’t too
good at predicting outcome values. And our SSE is going to be big.
Alright, so now we have all the pieces of our puzzle. Total Sums of
Squares, Sums of Squares for Regression, and Sums of Squares
for Error: Total Sums of Squares represents ALL the information
that we have from our Data on YouTube likes. Sums of Squares for
Regression represents the proportion of that information that we
can explain using the model we created. And Sums of Squares for
Error represents the leftover information--the portion of Total Sums
of Squares that the model can’t explain. So the Total Sums of
Squares is the Sum of SSR and SSE.

Now we’ve followed the General Linear Model framework and
taken our data and portioned it into two categories: Regression
Model, and Error. And now that we have the SSE, our
measurement of error, we can finally start to fill in the Bottom of our
F-statistic. But we’re not quite done yet. The last and final step to
getting our F-statistic is to divide each Sums of Squares by their
respective Degrees of freedom. Remember degrees of freedom
represent the amount of independent information that we have. The
sums of square error has n--the sample size--minus 2 degrees of
freedom. We had 100 pieces of independent information from our
data, and we used 1 to calculate the y-intercept and 1 to calculate
the regression coefficient. So the Sums of Squares for Error has 98
degrees of freedom. The Sums of Squares for Regression has one
degree of freedom, because we’re using one piece of independent
information to estimate our coefficient our slope. We have to divide
each sums of squares by its degrees of freedom because we want
to weight each one appropriately. More degrees of freedom mean
more information. It’s like how you wouldn’t be surprised that Katie
Mack who has a PhD in astrophysics can explain more about the
planets than someone taking a high school Physics class. Of
course she can she has way more information. Similarly, we want to
make sure to scale the Sums of Squares based on the amount of
independent information each have. So we’re finally left with this:
And using an F-distribution, we can find our p-value: the probability
that we’d get a F statistic as big or bigger than 59.613. Our p-value
is super tiny. It’s about 0.000-000-000-000-99. With an alpha level
of 0.05, we reject the null that there is NO relationship between
likes and YouTube comments on trending videos. So we reject that
true coefficient for the relationship between likes and comments on
YouTube is 0. The F-statistic allows us to directly compare the
amount of variation that our model can and cannot explain. When
our model explains a lot of variation, we consider it statistically

significant. And it turns out, if we did a t-test on this coefficient,
we’d get the exact same p-value.

That’s because these two methods of hypothesis testing are
equivalent, in fact if you square our t-statistic, you’ll get our F-
statistic! And we’re going to talk more about why F-tests are
important later.

Regression is a really useful tool to understand. Scientists,
economists, and political scientists use it to make discoveries and
communicate those discoveries to the public. Regression can be
used to model the relationship between increased taxes on
cigarettes and the average number of cigarettes people buy. Or to
show the relationship between peak-heart-rate-during-exercise and
blood pressure. Not that we’re able to use regression alone to
determine if it causes changes. But more abstractly, we learned
today about the General Linear Model framework. What happens in
life can be explained by two things: what we know about how the
world works, and error--or deviations--from that model. Like say you
budgeted $30 for gas and only ended up needing $28 last week.
The reality deviated from your guess and now you get to to go to
The Blend Den again! Or just how angry your roommate is that you
left dishes in the sink can be explained by how many days you left
them out with a little wiggle room for error depending on how your
roommate's day was. Alright, thanks for watching, I’ll see you next
time.
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