
Randomness: Crash Course Statistics #17
Crash Course: Statistics
https://youtube.com/watch?v=jL9en6NvQfk
https://nerdfighteria.info/v/jL9en6NvQfk

Hi, I’m Adriene Hill, and Welcome back to Crash Course, Statistics.

There’s a lot of talk of “randomness” in statistics. It’s probably
something you’ve heard a lot in this series and in real life too.

Randomness is tied to the idea of uncertainty. Like why are these
fries here? And are they delicious?

But just because something is random doesn’t mean we know
nothing about it. For example, I might not know exactly how many
people will shop at my local Costco today, but I do know it’s
probably more than 100, and probably less than 1 million. Even with
these very conservative guesses, I still know something about the
“randomness” of this variable.

It’s an odd juxtaposition of what we know and what we don’t at the
same time. INTRO Lots of things in your everyday life are random.
From dice rolls in your weekly Dungeons and Dragons game, to
which card you draw next when playing Canasta, to how many
people in your subway car are Trekkies.

Since individual values of these random variables aren’t that
predictable, we generally look at the outcomes across multiple
instances. Often, the best way to get a feel for the behavior of
random variables like dice values is to simulate them. Simulations
allow us to explore options that didn’t happen, but could have
happened.

And when you get right down to it, that’s what statistics is all about.
Let’s look at a simulation to understand more about the weight of a
Large Fry at McDonald's. Supposedly, a Large Fry at McDonald's
has about 168 grams of crispy, salty, potato-y goodness.

But we know that the process of shoveling piping hot fries into
cardboard cartons, isn’t an exact science. But it most likely is a
random process, which means that the weight of your fries, is a
random variable. You don’t know exactly how many grams will be
in your next order of fries, but you can know something about the
random process that generates these weights, so you hop in your
car, drive to the nearest McDonald's and order 10,000, large fries.

Back at home you get out your scale and begin to unbag and weigh
your fries… the first batch weighs 173.03 grams. Not bad, seems like
you got an extra fry or two. The next 4 orders weigh 169.05 152.41
153.80 174.60 grams respectively.

After unbagging and weighing all 10,000 orders you plot a
histogram of all the weights. Looking at this graph, we can see that
McDonald's is pretty good at giving you your fair share of fries. Most
orders have around 168 grams.

But we can also see that the randomness of the carton-filling
process means that we can expect to occasionally see orders with
up to 200 grams and as low as 130 grams... but those don’t
happen too often. You may ask how many grams of fries you
should expect to get on your next trip to McDonald’s... our best
guess is the mean. It’s the amount we expect to get from this
random fry distributing process.

You already know how to calculate the mean of a finite group of
numbers--the sum of those numbers divided by the numbers of
items, n--so let’s expand our definition so that we can take the
mean of a distribution. Again, the mean is a type of expectation, it’s
called the expected value of the data because it's what we “expect”
from our data overall. Like how you “expect” that an American
woman would be the average height of 5’4 or 163 centimeters if
you didn't know anything else about her.

With discrete distributions, where values can only take on set

numbers like how many sodas people drink at a party... calculating
the expectation looks similar to the mean formula. For simplicity’s
sake, let’s say that people will only take 0,1,2, or 3 sodas at your
party. And you want to know how much soda you should expect a
person will drink so that you can get enough.

Cause nothing kills a party like running out of soda… For each
possible value, multiply it by the relative frequency for that value
and add all these products together. So if 10% of people will drink 0
sodas, 20% will drink 1 soda, 40% will drink 2, and 30% will drink 3
sodas, we get this formula for the expected value. Which equals 1.9
sodas, meaning you should buy about 2 sodas per guest.

Notice that we didn’t have any actual counts for your guests...no
one RSVPs anymore. This is the expected value of the distribution,
and we can apply it to any number of guests we want. But not
everything in life is measured discretely, sometimes...oftentimes…
you’ll have continuous variables like height, or grams of fries, which
can take on any value at all.

In theory, calculating the expectation for a continuous distribution is
exactly the same, except now we have an infinite number of values
which means adding all of the products of values and frequencies
isn’t really doable. Luckily Sir Isaac Newton invented the integral
which allows us to take the sum of an infinite number of these
products without actually adding them all up by hand. You may see
it written like this.

But this is simply the fancy math way of saying, “multiply all the
values by their frequencies and add ‘em up”. If we wanted to know
the expectation of the weight of a large fry in grams, we can use
this integral and the fact that the fry weights are normally distributed
to calculate it. No matter how you’re calculating it, the expectation
of your data is an important thing to know.

It not only characterizes the data, but it can help you make sure that
you know what to expect, from number of sodas to have at a party,
to how much joy you should expect from a belly full of fries;
expectation helps you understand something about randomness.
But not everything...there’s still more to know about random
processes, like how spread out or how variable they are. Variance
is also an expectation.

It tells us how spread out we expect the data to be. The variance of
the amount of money each family makes is pretty high, because
people don’t all make the same amount of money. To make things
easier, we can represent expectation like this.

Variance is the expectation of all data points minus the mean
squared. Since we’re subtracting the mean, we call it mean-
centered or “central”. In essence, we’re creating a new distribution
(each value minus the mean squared) , and taking the expectation
of this new distribution.

Since expectation is always the same--we just sum a bunch of
values times their frequencies -- these two formulas are the same.
Since we’re taking each value minus the mean to the second
power, we also often call this the second moment of the data.
Which is just the expectation of the mean-centered data to the
second power.

The second moment tells us how reliable the first expectation is...if
you have a really high variance for your estimate of how much soda
to buy for your party, you know that you might want to run to the
store for a couple extra cases, since it’s possible that you might get
a group of real soda guzzlers. So the mean is the first moment of a
distribution of data, and the variance is the second. And we can
keep going.
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There are a lot of moments since all we do is keep raising to higher
and higher powers, but the first four are the most useful for our
purposes. We’ve already covered the first two, but the third
moment--the expectation of the mean centered data to the third
power--is also something you might be familiar with: Skewness.
Skewness tells us whether there are more extreme values on one
side, like income or amount won in Vegas which are both right
skewed.

Think back to your algebra class...when you take something to an
even power like 2, or 4, your number is always positive. So even
moments--like variance--are always positive. Variance counts
extreme values on the right and the left of the mean the same,
since it squares them. -2 squared and 2 squared are both 4, so
values that are 2 units above or two units below the mean both
contribute equally to the variance.

But odd powers like 3 can be negative or positive, so they count
numbers above the mean differently than those below. Numbers
smaller than the mean that are negative will still be negative when
they’re taken to the third power. So the third moment--skewness--
is a measure of how skewed the distribution is.

If there are a lot more extreme values smaller than the mean,
skewness will tend to be negative. On the other hand, if there are a
lot more extreme values bigger than the mean, skewness will tend
to be positive. We’ve seen that as humans, we’re pretty good at
seeing when a distribution is skewed, but it can be really useful to
have a way to quantify it.

Just like the variance tells us how reliable the mean is, skewness
can tell us how reliable the variance is. If a distribution is really
skewed, then the variance is going to be a lot higher on one side.
Imagine the distribution of the amount of chips that people will eat
at your party is skewed, you know that there’s a lot more extreme
values on one side...maybe some people forgot to eat dinner before
they showed up.

And finally, the Fourth moment - Kurtosis. Kurtosis is the
Expectation of the mean centered data to the fourth power. And it’s
a measure of how thick the tails on a distribution are.

This tells you how common it is to have values that are really far
from the mean. When you’re playing music at your party, the
distribution of how loud people like the music to be might have high
kurtosis; There’s a lot of people who want it quiet so they can talk,
and others who ...don’t want to talk. Though it’s not as common,
kurtosis, along with all the other moments, can help us have more
information about a random distribution.

For example, it can help us tell whether a variable follows a normal
distribution. You can see the mean--the first moment--tells us where
a distribution is on a number line. When you change the mean, you
slide the distribution left or right.

The other moments tell us about the shape and spread of the
distribution, which stay the same no matter where we move the
distribution. So it might make sense that when we add two
independent random variables together, like the sum of two dice
rolls, the mean of this new distribution is the sum of the means of
the two distributions being added. And this is true no matter how
many means you add.

Maybe your stats teacher has said “The mean of the sum is the
sum of the means”. Similarly the variance of the sum of two
independent variables is the sum of their variances. So if we do
want to look at the distribution of the values of two dice rolls, we can
easily calculate the mean and standard deviation.

The mean of one die roll is (1+2+3+4+5+6)/6 or 3.5 The mean of
two dice rolls would be 7, since it’s the mean of the first roll, plus
the mean of the second roll. The variance of the value of one roll is
about 2.9 which means the variance of the value after rolling two
dice is about 5.8. And as for those fries, we’d expect to get about
336 grams if we ordered two larges.

Randomness is the reason you can’t be sure you’ll win in Las
Vegas, or why you always have to leave early because you can’t
predict how long you’ll have to wait for a parking spot, or why
sometimes you bring an umbrella with you on days when it doesn’t
end up raining. But the beauty of statistics is that it helps us know
something about this randomness and make better, more informed
choices in the midst of chaotic randomness. Like deciding whether
a machine learning algorithm trained to recognize sheep is truly
better than humans at recognizing sheep in unusual places.

Or even whether the increase you observed in fecal matter on
people’s hands is really higher after using air dryers than paper
towels. Thanks for watching, I’ll see you next time.
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