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Hi, I’m Adriene Hill, and welcome back to Crash Course Statistics.

General Linear Models -- like Regression and ANOVA -- let us
create a statistical analysis of data for our specific needs. Fitting the
right model to our experiments is kind of like Tetris… GLMS are in
this analogy tetriminos.

Sometimes you need the skinny-long brick, called the straight
sometimes you need the square sometimes you need the left
snake. In stats, its similar sometimes you need regression
sometimes ANOVA but there’s also ANCOVA ---The Analysis of
Covariance. And the Repeated Measures ANOVA.

Today we’ll look at the shape of those models. And how they might
help us level-up! INTRO As a quick review, in a few of our past
episodes we covered the fact that ANOVAs and regressions are
both General Linear Models.

ANOVAs allow us to analyze the effect of variables with two or
more groups on continuous variables. And regressions allow us to
analyze two continuous variables. General Linear Models explain
the data we observe by building a model to predict that data, and
then keeping track of how close the prediction is.

And both regressions and ANOVAs use a similar model setup. It
looks just like the equation for a line that you may have seen if
you’ve taken Algebra. The fact that they’re set up the exact same
way is helpful for two reasons.

One, it means we only have to remember one general mode , and
two it allows us to combine these two powerful models to give us
the even more flexible ANCOVA. For example, we might want to
look at the amount of general anesthesia needed to put a patient
under. There have been studies that suggest that redheads require
more anesthesia than non-redheads because the gene mutation
that causes red hair, also affects pain receptors.

So we have two groups: redheads and non-redheads. Those are
categorical variables. But, we also think that weight will have a
meaningful impact on the amount of this specific anesthetic that’s
needed for surgery.

Weight is a continuous variable. To make sure things are relatively
equal, we look at only one kind of simple, routine surgery: appendix
removal. Working with a hospital, we collect data on 100 randomly
selected patients. 50 redheads, and 50 non-redheads.

We record their weight, natural hair color, and the amount of
anesthesia needed during their surgery. We can now build a model
to predict milliliters of anesthesia based on hair color and weight.
Just like its friends, regression and ANOVA, the ANCOVA looks at
the overall variation in the data, and uses different variables, like
hair color and weight, to explain it.

The overall variation is, as always, measured by the sum of the
squared distances between the overall mean amount of anesthesia
used, and each dose of anesthesia that was administered. This
variation is called the Sums of Squares total. So now we can
calculate an ANOVA table that shows us the sums of squares and F-
tests for each of our effects.

Even though this is an ANCOVA model, we still usually refer to
these as ANOVA tables. And even though this table has both
continuous regression factors and categorical ANOVA factors, we
read it just like it’s a regular ANOVA table. Here we can see that
weight is a significant predictor of how much anesthesia you’ll
need, but hair color isn’t .it’s really tempting to call hair color
“nearly significant” because it’s SO close to 0.05.

But our cutoff is strict. It has to be less than 0.05. We now have a
tool that allows us to combine categorical and continuous variables
into one General Linear Model.

The world as they say is our oyster. We can predict all kinds of
things with all kinds of variables. We can also use our new
ANCOVA models to make stronger inferences.

In our example,we were interested, mainly, in whether being a
redhead significantly increased the dose of a new anesthetic. But
we also included weight in the model, since we knew that weight
plays a pretty big role in how much anesthetic you need. Weight
accounted for a lot of the variation in the model.

Its eta squared is 0.353, which means that it accounts for about
35% of the variation in our data. That’s pretty high. And since it
“soaked up” all of that variation, our Sums of Squares Error is now
smaller.

If we had run a simple ANOVA with JUST hair color, the differences
between anesthetic doses due to weight would have just been
chalked up to “random variation”, or error because it’s
source--weight--wasn’t in our model. For both of these models, the
simple case where we ONLY look at hair color, and the more
complex case where we look at both hair color and weight, the total
variation in the data is the same. Because it’s the same data.

Total variation looks only at our outcome variable--like milliliters of
anesthetic. So, when we build our models, we’re partitioning the
same amount of variation into groups. Our simple ANOVA model
JUST looks at how much of this total variation is due to being or not
being a redhead.

The rest is counted as error, just because “error” refers to variation
that our model doesn’t account for. When we use the bigger model
that includes both hair color and weight, we take some of that
variation that was attributed to error, and attribute it to weight
instead. This makes our pile of error variation smaller.

For this reason, many researchers will add covariates--continuous
variables that are used to explain our outcome variable--not only for
inference, but also to reduce the amount of error variation. Let’s
take another example. Say we want to look at the effect of a new
brand of formula on the weight of infants.

We have two randomly assigned groups of infants: those with our
new formula and those who get an established brand of formula.
But infants grow very quickly, so we want to account for any
variation due to age, so we include age in days in our model. If we
just ran a model that included formula type, our Sums of Squares
for Error is pretty big.

And formula doesn’t have a significant effect on infants’ weight.
But we know that infants weights are strongly correlated with how
old they are, so when we include that in a new ANCOVA model, it
takes some of the variation that was error variation in our simple
model, and accounts for it using age in days. As you can see from
this ANOVA table, adding age as a covariate allowed us to explain
some of the variation, while making it easier for us to detect the fact
that there is actually a significant effect of formula type on babys’
weights.

And we’re not limited to just one covariate. We can add many, if we
want. We could add mother’s weight to this ANCOVA, or even
another categorical variable, like ethnicity.

Our models are limited only by our ability to collect data. But we
have to be careful when we're using covariates to do inference.
There are cases when it makes sense to have a bunch of
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covariates.

But if someone is adding a bunch of them just to make their p-
values significant, that could be considered p-hacking And we can
continue to customize our model even further so that we’re
partitioning our variation more accurately. Previously, we noted that
it’s difficult to do a statistical test on whether there was a significant
difference between the mean ratings of two coffee shops. That’s
because people’s individual coffee preferences add extra variation
to our data.

People who hate coffee will always rate it relatively low, and people
who love coffee will always rate it pretty high. In that simple case,
we did a matched pairs t-test in order to “subtract” the variation due
to people’s different levels of coffee affinity. Essentially, what we
were doing was allowing each person to have their own “baseline”
coffee preference.

This allowed us to see whether there was a pattern of one coffee
shop getting higher ratings than the other, regardless of whether the
people who rated it loved, tolerated, or hated coffee. And we can do
that with more than 2 groups as well, using something called a
Repeated Measures ANOVA. A Repeated Measures ANOVA asks
whether there’s a significant difference between 2 or more groups
or conditions.

The key to an Repeated Measures ANOVA is that the same
experimental unit, whether it’s a cell, a person, or an animal, is
measured multiple times. Hence “Repeated”. And in practice, it
works pretty similarly to the match pairs t-test, except it allows you
to look at more than 2 groups.

A repeated measures ANOVA lets each experimental unit have its
own “baseline”. So we could ask whether there’s a significant
difference between 10 different coffee shops, or whether there’s a
significant effect of slow, medium, and fast tempoed music on the
speed we run. Everyone has a different baseline running speed.

Maybe your friend who injured their knee runs pretty slowly, but
your cousin can run a 6 minute mile. But it’s still possible to say
that on average, people run faster when a bear is chasing
them--whether they’re fast or slow. We’re looking at data from 150
people, and we record how fast they can run a mile listening to
slow, medium and fast tempoed songs.

We measure them on different days so that they don’t get too tired
after all that running (that could affect our data). And we make sure
to randomize the order of the music so that not everyone gets slow
first, or medium last. If we simple looked at an ANOVA that used
music tempo to predict mile pace there’s a lot of variation.

And when we ran this simple model, the effect of music tempo is
non significant. That may be due in part to the fact that the
difference between how fast individual people normally run is
counted in the Error Sums of Squares, making it a lot bigger. (That
might not be the only reason, though.) So, we tell our model which
measurements belong to the same person. And then, we tell our
model to let each individual person have their own baseline mile
time, and we’ll just look at how much music tempo affects the
changes from people’s baseline running speeds.

So whether you normally run a 5 or 15 minute mile, an increase in 1
minute will be counted the same. Theoretically, it’s sorta like
centering everyone on their own mean running speed. If you
normally run a 6 minute mile, that becomes your 0 baseline.

Same thing if you normally run a 12 minute mile. Since the math of
these models--sometimes called Random Effect Models--can get a
little intense, we’re just going to focus on how to read the ANOVA

table output from a Repeated Measures ANOVA. Here, our output
shows us that there is actually a significant effect of the music
tempo on running time.

Because we allowed everyone to have their own “baseline” speed,
we in essence took that variation away, and made our error term
smaller. We now have the shapes we need to fit all kinds of
situations… We can combine categorical and continuous factors,
and we know how to handle data where the same subject is
measured multiple times. We can slide these pieces together in all
sorts of ways.

We can build a model that looks at how the number of hours of
Tetris we play affects how far we go in each game and if expertise
level effects how long someone plays. Or we could add statistical
rigour to the decade long arguments over which Tetris shapes are
the best (it’s the straight) and the worst to get. Thanks for watching,
I’ll see you next time.
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