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Hi, I’m Adriene Hill, and Welcome back to Crash Course, Statistics.

In the last episode we talked about Null Hypothesis Significance
testing and p-values and how these two things help us make
decisions about things we care about. Like whether babies who
drink non-dairy milk are more likely to have allergies, or whether the
number of hours you spend watching home makeover shows tends
to increase with age.

We don’t always come up with the right answer, even if it seemed
reasonable. We want to limit our errors as much as possible. Today
we’ll talk about when and why we might get it wrong.

INTRO In the last episode we briefly touched on “rejecting” the null
hypothesis. P-values tell us how “rare” or “extreme” our sample
data would be if it really did come from the null distribution. Null
means nothing so null hypotheses tend to say that there’s no
effect, or nothing’s going on.

For example, for whether babies who drink non-dairy milk are more
likely to have allergies, the null hypothesis (or H0) would be that
there is no difference in proportion of babies with allergies between
babies who drink non-dairy milk, and those who do not. In the case
of home makeover shows, the null hypothesis might be that there’s
no relationship. So the regression slope--or coefficient--between
number of home makeover shows watched and age would be 0: By
looking at this slope, we can see it’s not exactly flat, but we don’t
know whether this slope is due to a real relationship, or just random
variation.

When we get low p-values, we “reject” the null hypothesis because
we’ve decided that our data would be pretty rare if the null was true
since the probability of getting data as or more extreme than ours is
below our alpha level. That’s option 1. Option 2 is that our p-value
is not lower than our pre-selected cutoff which means that we “fail
to reject” the null hypothesis.

So, we’ve narrowed it down to two decisions: we can either reject,
or fail to reject the null. The null can either be true, or not true. This
means that there are four possible situations: either you correctly
reject the null, mistakenly reject the null, correctly fail to reject the
null, or mistakenly fail to reject the null.

In two of these situations we make the correct decisions, and in the
other two, we’d have made an error. The first error is called a Type
I error, which is rejecting the null, even if it’s true. It can therefore
only happen if the null is true.

Say we’ve decided that our alpha level is 0.05, so we’ll reject the
null if our p-value is smaller than 0.05, which means that our
sample is in the 5% most extreme values we can expect to get if the
null hypothesis were true. So, if the null is true, 5% of the time,
we’ll still reject it mistakenly, just because we happened to get a
rare value. The red shaded region represents all the values from
the null distribution that would cause us to decide to “reject” the
null, even if it was true.

Since our type 1 error rate is equal to alpha, we get to choose
exactly how often we are willing to make Type 1 errors when we
choose our alpha. We control our Type I errors by explicitly deciding
how often we’ll make them. We could also make an error by failing
to reject the null hypothesis when it actually is false.

In order for the null hypothesis to be false, some other, alternative,
hypothesis must be true. We mentioned in the last episode that we
don’t actually know any specifics about which hypothesis is correct
when we “reject the null”, it could be anything. But we can estimate
which distribution might be correct, we’ll show it outlined in gray,
this helps us to compare two distributions instead of just looking at

one.

We estimate the alternative distribution based on the mean and
standard deviation of our experimental group. The sample mean is
our best guess at what he effect size is, so we often use that if
we’re estimating the alternative after we’ve collected our data. But
sometimes we want to estimate it before we collect data, in which
case we use the sample estimates from other, related studies.

We’re assuming the Alternative (Ha) distribution looks like this. Our
cutoff line is still in the same place; it marks the cutoffs that tell us
where the 5% most extreme values are. Any value we get that is to
the right of the line causes us to “reject the null” and any value to
the left of the line causes us to “fail to reject the null”.

The cutoff value doesn’t change depending on whether H0 or HA is
true. So, if the alternative is true, we still might fail to reject the null if
we happen to get a value that is to the left of the cutoff. The blue
shaded region shows you the values where we’ll make this Type II
error.

Just like the rate of Type I errors is equal to alpha, the rate of type II
errors is equal to Beta. Since we’re only estimating what the
alternative distribution looks like, we can’t know what Beta is for
sure, but again we can estimate it by using our cutoff (alpha) and
our best estimates of the shape and position of our alternative
distribution to find the approximate area of the shaded region.
There’s often a trade off between Type I and Type II errors.

Type I errors are essentially False positives: we think we’ve
detected an effect, but there isn't one. And Type II errors are False
negatives: there was an effect, we just didn’t see it. And while both
of these mean we were wrong, there’s a lot of times where we may
prefer one type of error over the other.

Take smoke alarms. While the sound of the smoke alarm going off
is annoying, there’s not a lot of cost to having a false positive--or
type I error. All you have to do is press a button to reset it.

There is however a huge risk if your smoke alarm does not go off
when there really is a fire. For this reason, fire alarms tend to favor
having type I errors over type II errors. Which is why sometimes
particularly long, hot showers can cause them to go off.

Better safe than sorry. But yeah, turning off an alarm when you’re
naked and wet. Not fun.

Think about someone in your life who is constantly worried, they
operate on the assumption that Type I errors--thinking there’ll be
an issue when there won’t be--are preferable to Type II errors--not
preparing for a problem when there really could be one. You can
see on this graph that if we assume our null distribution is here, and
the alternative is here, then moving the cutoff threshold to the right
will cause us--all other things being equal--to have fewer type I
errors. But we’ll have more type II errors since less of the null
distribution is in the “reject” region, and more of the alternative
distribution is in the “fail to reject region”.

And the opposite happens if we move our cutoff threshold to the
left. We’ll have more False positives since more of the null is in the
“reject” region, but fewer False Negatives because less of the
alternative distribution is in the “fail to reject” region. If the error
types hard to keep straight, think of the Boy who cried wolf.

In that story the villagers first made a type I error (thinking there
was a wolf when there really wasn’t), but by the end--and to the
detriment of the little boy--they made a type II error: thinking there
WASN’T a wolf when there really. Sometimes we do make the right
decision and there are two ways to be right: either the null
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hypothesis is true and we fail to reject it, or the null hypothesis is
false and we do reject it. If the null is true, you’ll reject it 1 - alpha of
the time.

When alpha is 0.05 that means that when the null is true, we’ll
correctly fail to reject 0.95 or 95% of the time. If the null is false and
the alternative is true, we’ll correctly reject the null 1-Beta of the
time. If Beta--the proportion of times we will fail to reject the null
even though it’s false--is 10%, then we’ll correctly reject the null
90% of the time.

This proportion (1-Beta) is called our statistical power. As the name
suggests, statistical power is really important and something that
we want. I mean, it’s a power.

I want powers! Statistical power tells us our chance of detecting an
effect if there is one. Imagine we design a study to look at whether
fish oil makes cat’s hair shinier and it has 80% statistical power.

That means we know that if there really is an effect of a certain type
of fish oil and if we ran the same experiment multiple times with
different samples of cats, the data from 80% of the experiments will
lead us to make the correct decision and reject the null hypothesis
that fish oil has no effect. This is important because the whole
reason that we do experiments is to see whether there’s an effect.
We don’t just test whether fish oil makes cat’s hair shiner just for
fun, we want shinier cats!

Statistical power tells us about our ability to detect these effects if
they exist. It would be a waste of time and money to run an
experiment on whether people who play video games have quicker
reaction times than those who don’t if we only have an estimated
20% power, because that means that even if there gameplay
effects reaction time, we often wouldn’t be able to tell. Experiments
cost money, so if you’re going to go through the process of growing
cells in a petri dish, or of giving cats fish oil you want to be relatively
confident you’ll be able to detect an effect if there is one.

Visually we see that statistical power is affected by how much the
null and alternative hypothesis distributions overlap. The more they
overlap, the less statistical power we’ll have, because less of the
alternative distribution will be to the right of the cutoff. There are two
main ways to get the two distributions to overlap less.

Either you can move them further apart, or you can make them
skinnier. The distance between the mean of the two distributions
represents something called “effect size”. If we’re looking at the
difference between two groups--like level of neuroticism between
cat people and dog people--effect size tells us how big the
difference in neuroticism is between the two groups.

If effect size is large, the groups are further away from each other, if
it’s small, they’re pretty close. If two things are really different from
each other, it’s easier to tell them apart. Say we’re researching
whether the amount of time people spend in the sun leads to more
freckles.

If one group that spent 10 minutes in the sun led to an average of 5
new freckles over the body, it’d be a lot harder to tell than if 10
minutes in the sun led to an average of 500 new freckles.
Unfortunately, effect size is largely out of our control. Researchers
can't magically change the efficacy of a drug, or the difference in
heart rate between people who do kickboxing and people who do
Crossfit.

We can also make our distributions overlap less by making them
skinnier. And remember, the null and alternative distributions are
just sampling distributions. We’ve seen that as you increase the
size of your samples, the distribution of sample means gets thinner.

And all other things being the same, they overlap less and we have
more power to detect an effect. This shrinking represents the fact
that in general, the more data we have, the more information we
have. Thankfully we can change sample size.

It might be a pain to sample more people, feed more cats more fish
oil, or measure more ocean temperatures, but at least it’s within
our control, unlike effect size. And that’s just what researchers do.
We already mentioned that if we’re going to take the time to run an
experiment or do a study... we want to make sure it has sufficient
power to detect any effects out there, and since almost everything
else is out of our control, scientists will increase their sample size to
get sufficient statistical power to detect these effects.

Across many fields it’s considered sufficient to have 80% statistical
power or more, and often when researchers are designing studies,
they’ll decide how many subjects they need based on estimates of
effect size and power. So now you’re playing with power…and in the
next few episodes we’ll talk a lot more about exactly when and how
you can use p-values, and also some completely different methods
for testing ideas. Thanks for watching, I’ll see you next time.
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