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Hi, I’m Adriene Hill, and Welcome back to Crash Course, Statistics.

We’ve been talking a lot about how to tell whether two groups are
different like whether there’s more car accidents on rainy days than
snowy days. or whether the IQ of university students is actually
different from the population. Today, we’re going to start a
conversation about statistical inference, which tells us how we can
go from describing data we already have to making inferences
about data we don’t have.

INTRO If you’ve watched any of the other videos in this series,
you’ve heard a lot about uncertainty. It comes up endlessly in
statistics. And uncertainty is at the core of what Inferential Statistics
is about: making decisions about ideas, or hypotheses.

I might be interested in whether listening to Mozart while doing
calculus homework improves my calculus grades. But I need to test
my hypothesis, I can’t just have an idea and claim it’s correct
without any evidence. One thing we need for sure, is data.

So we could randomly sample two groups of 25 people and make
half of them listen to Mozart and half to do their homework in
silence. We collect their calculus grades and see that those who
listened to Mozart scored on average 3 points higher than those
who didn’t. So Mozart’s good.

Problem solved, break out Sonatas, right? Unfortunately, no.
We’ve seen that sample parameters like the mean are just
estimates of the mean of the population that they are taken from.

The sample mean score of the Mozart group is higher. But we don’t
have sufficient evidence that the population mean of Mozart
listeners is higher than those who did their work in silence. We may
have gotten an especially high sample mean that isn’t close to the
true population mean.

So we need a way to test our hypothesis while taking into account
the random variation of sample means. In theory, one way you
could test a hypothesis or model is by how well it predicts the data
you got. For example, you and your best friend really love giraffes,
and you’ve spent a lot of time watching them at the zoo and
drawing sketches of them.

So you both have a hypothesis about the average number of spots
a baby giraffe has, but they’re slightly different. You think that baby
giraffes have an average of 175 spots, with a standard deviation of
50 spots, and your best friend thinks that baby giraffes have an
average of 209 spots with a standard deviation of 45 spots. With the
permission of your local zoo, of course, you begin to collect a
random sample of baby giraffes and count how many spots they
had.

Your sample of 25 baby giraffes had a mean of 200 spots. Now that
you have data, you can use it to evaluate which one of you is more
likely to be right. Both you and your friend have a model or idea
about what the population distribution of baby giraffe spots is.

If you’re right, then the sampling distribution of all the possible
sample means we could get looks like this: (RED in chart) And the
distribution of sample means for your friend’s model looks like this:
(black in chart) Let’s look at where our sample mean of 200 lies on
both of these distributions. You can see that you’re more likely to
see a mean of 200 spots under your friend’s hypothesis than yours.
If your model were correct, a mean of 200 spots is pretty rare...it’s
in the top 1.2% most extreme values we’d expect to see, whereas
in your friend’s model, a mean of 200 spots is only in the top 32%,
which means it’s pretty common that we’d see sample means
around 200 if your friend’s model was correct.

But we don’t always have predictions that are as specific as you
and your friend’s predictions about baby giraffe spots. We might
have a more general hypothesis, like that the average number of
baby giraffe spots is more than 200... but that’s all that you really
know. In situations like these, one common method of testing ideas
is Null Hypothesis Significance Testing (NHST) You have a
hypothesis.

That people with a certain gene, we’ll call it gene X, eat a different
amount of calories than the general population. Null Hypothesis
Significance testing asks you to test a different hypothesis--which
says there is no difference or effect of this gene. And we’ll see how
well this null hypothesis predicts the data we’ve collected.

In this case the null hypothesis--or null model-- is that the
population mean caloric intake for people with gene X is actually
2,300, the same as the regular population. If the null hypothesis is
found to be infeasible, we can “reject” it. We can represent this
hypothesis like this: This might seem like a pretty round about way
to test your theory that people with gene X eat differently, and
that’s because it is.

Null Hypothesis Significance testing is a form of the reductio ad
absurdum argument which tries to discredit an idea by assuming
the idea is true, and then showing that if you make that assumption,
something contradictory happens. For example, you can use
reductio ad absurdum to show that there is no largest positive
integer. Let’s assume there is a largest positive integer.

We’ll call it AB for “absurdly big”. Now add one to AB. shoot. That
would be a larger positive integer...which would be absurd since AB
is the largest.

Therefore, by reductio ad absurdum, there is no largest positive
integer. By the way, if this kind of argument sounds familiar, it might
because reductio ad absurdum is like proof by contradiction. Let’s
test the null hypothesis for our our gene X case.

First, we assume that the mean number of calories eaten by people
with gene X is 2,300, just like the regular population. If we can show
that this assumption makes something “absurd” happen, then we
can “reject” the idea that it’s true. With data from 60 people with
gene X, we see that the mean number of calories eaten was 2,400
with a sample standard deviation of 500 calories.

We have to ask how rare or “absurd” it would be to get a sample
mean that is this far away from our assumed mean of 2,300.
Essentially, we imagine that we take a random sample of 60 people
with gene X over and over and over again and calculate the mean.
Then we ask how many times out of all those experiments, do we
get a sample mean that’s as far away from 2,300 as our actual
sample mean of 2,400 is.

Even if you haven’t heard of the term null hypothesis significance
testing, you may have heard of p-values which have been covered
everywhere from academic journals, to Buzzfeed articles. A p-value
answers the question of how “rare” your data is by telling you the
probability of getting data that’s as extreme as the data you
observed if the null hypothesis was true. If your p-value was 0.10
you could say that your sample is in the top 10% most extreme
samples we’d expect to see based on the distribution of sample
means.

If we assume that the null hypothesis is true, and the mean caloric
intake of people with gene X is 2,300 with a standard deviation of
500 calories, the distribution of sample means will look like this, and
tells us which means we expect to see and how often we expect to
see each of them. Sample means around 2,300 are most common,
but we’ll also often see sample means a little bit further away. We
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can use this distribution to calculate our p-value.

This is similar to how we compared the likelihood of 200 giraffe
spots in you and your friend’s models, but with only 1 model this
time. Here’s our sample mean of 2,400 on this graph. Only about
8.99 percent of the possible sample means are higher than 2,400.

So it’s not that unlikely that we’d get a sample mean that’s this
high if the true population mean was 2,300 calories. This is called a
one-sided p-value since it only tells us the probability of getting a
sample mean that’s higher than 2,400. Often when we ask
scientific questions like “Does this medicine have a different level of
efficacy than the existing treatment?” we don’t know which
direction the effect will be in.

The new medicine might be better...or it might be worse. Gene
X’ers might eat more, or they might eat less. Because of this--and
a few other reasons we’ll talk about later in the series--p-values are
often two-sided, meaning that we look at how far away a value is
from the mean, regardless of if it’s higher or lower .

This allows us to reject the null hypothesis if our value is
significantly higher than the mean, or if the value is significantly
lower than the mean. Because the distribution of sample means is
symmetrical, if 9% of the samples of caloric intake are higher than a
mean of 2,400, about 18 percent of sample means for calories
would be as far away or further from the population mean than
2,400 is in either direction. In other words, a two-sided p-value is a
measure of how extreme your sample mean is, because it tells you
how often you’ll get a value that’s as or more extreme than the one
you got.

The smaller your p-value is, the more “rare” it would be to get your
sample just by random chance alone if the null is true. In our
example, we learned that if we assume that there is no effect of
gene X on caloric intake, then there would be an 18% chance,
about 1 in 5, that we’d see a sample like this just because of the
random variation of samples. To finish our attempt at reductio ad
absurdum, we have to decide whether this sample is “absurd” or
“extreme” enough to lead us to believe that this sample probably
isn’t from the null distribution.

But that decision isn’t always an easy one to make... It’s not clear
how “rare” or “absurd” a sample needs to be before I decide to
“reject” the idea that the sample was taken from a population that
has the null distribution. Especially since we don’t have another
distribution to compare it to, like we did with the giraffes.

Our p-value of 0.18 tells us that if we took a sample like this over
and over, about 1 out of every 5 times we’d get a sample with a
mean caloric intake that’s further from the mean than 2,400
calories is. 1 in 5’s not bad...but a 1 in 20 chance might be better.
And 1 in 100 better than that. Some statisticians see a p-value as a
continuous measure of evidence.

A p-value of 0.18 like ours might be considered pretty weak
evidence that our sample isn’t taken from the null distribution. But
it’s better than 0.19, which is in turn better than 0.20 and so on.
However, in Null Hypothesis Significance Testing, p-values need a
cutoff.

We could set a cut of at 0.05 and say that a p-value that is less than
0.05 is sufficient evidence to allow us to “reject” the idea that the
null hypothesis is true. When we can reject the null hypothesis, we
consider our result to be “statistically significant”, which is basically
a phrase that just means “unlikely due to random chance alone”.
As we’ll see later on, it doesn’t always mean that it should be
“significant” or meaningful to you.

A cutoff of 0.05 means that we want our sample value to be at least
in the top 5% of most extreme values in our distribution before we
consider the value evidence against that hypothesis. And any p-
value less than the 0.05 cutoff counts. 0.049 leads to the same
conclusion as 0.0001. Both cause you to reject the null hypothesis.

The current scientific consensus in most fields is that your cutoff--or
alpha--should be 0.05. But there’s huge disagreement in the field of
statistics about whether 0.05 is appropriate, and we’re going to
dive into later. In the meantime I’m going to get 24 more giraffes so
I can compare my model with my friends.

Thanks for watching. I’ll see you next time.
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