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Hi, I’m Adriene Hill, and welcome back to Crash Course Statistics.

When comparing groups, there isn’t always one single box that we
can put someone into. You might be someone’s child, but also a
parent, and a partner.

You have an ethnicity or maybe a job title, and maybe you’re a
competitive dog groomer And it’s not just people that belong in
multiple groups. Your watch might be a smart watch, but also an
Apple product, and something that’s rose gold. Things and people
belong to multiple groups.

And those groups can overlap or interact. So today, we’re going to
take a look at ANOVAs that include more than one grouping
variable. INTRO We want to look at sedan prices to figure out how
they’re affected by manufacturer and color.

For now, we’ll assume that those two factors are independent of
each other -- they don’t interact. And for this, we use a Factorial
ANOVA, which can have just two grouping variables--like car
manufacturer and car color--up to hundreds of grouping variables.
In this case we're going to look at Toyotas, Hondas, Chevrolets,
and Lamborghinis.

And include the colors blue, red, silver, and white. A Factorial
ANOVA does almost exactly what a regular ANOVA does: it takes
the overall variation--or Sums of Squares--and portions it out into
different categories. If we’re interested in how car manufacturer
and color affect price, we first calculate the overall variation in the
dataset called the Sums of Squares Total.

We do this by summing up all the squared distances between each
car price and the mean overall car price. Then once we know the
total variation in the data set, we set out to use manufacturer and
color to explain why these sedans have different prices. Our
proposed model looks something like this: Which tells us that we
think the price of a car is some baseline cost plus an adjustment for
who made the car and what color it is.

And like before, we know that we won’t always be exactly spot on.
So to complete the General Linear Model form we add an error term
which represents how “off” our guess was from the actual price of
each car. We’re going to use our model and the error to create F
statistics for each part of our model, as well as the model as a
whole.

The F-statistic is a ratio between the scaled Sums of Squares for a
variable and the scaled Sums of Squares for the Error. We call
these scaled versions of the Sums of Squares, Mean Squares.
When we create these models using statistical software like R, or
Python, or even Excel, we’ll usually get what we call an ANOVA
table as an output.

And the table will give us all the information we need to answer our
questions. We can see in this table that the p-value for color is way
bigger than our alpha cutoff of 0.05. So we did not find evidence
that color has a significant effect on car price.

On the other hand, we did find evidence that manufacturer has a
significant effect on car price. And I guess we knew that. But just
like with our t-tests, we know that a significant F-test only means
this result is statistically significant.

It doesn’t always mean it’s practically significant to you. If there’s
a statistically significant effect of manufacturer on car price but it
turns out it’s only about a $20 difference well that might not have a
huge impact on whether or not you decide to buy a particular car.
So we need another measure of effect size.

Something that helps us understand how big the effect really is in
more practical terms. There are many different measurements of
effect size for ANOVAs, but they all share similar ideas, so we’ll
show you just one: eta squared. Effect sizes try to tell us how large
an effect is compared to how much variation we generally expect.

In a t-test, we recognize that a new negotiating technique that only
increases salaries by about $2 a year is not that exciting because
people’s salaries generally vary way more than $2 a year. Eta
squared does the same thing for us. To calculate eta squared, you
take the Sums of Squares for your particular effect--in this case, car
manufacturer--and divide it by the Total Sums of Squares for your
entire data set.

Eta squared is always between 0 and 1. And its interpretation is like
the interpretation of R-squared. Eta squared tells you the proportion
of total Variation that’s accounted for by your specific variable.

So here, in our made up data, we see that 46% of the variation in
car price is accounted for by manufacturer. Sounds like a lot. But
effect size is something that the person analyzing the data will have
to interpret for themselves.

It can be pretty subjective. We might also be interested in how well
our entire model--with both manufacturer AND color--can predict
sedan prices. Say we were designing this model for a car selling
website so that they can tell customers what they should expect to
pay for their dream car.

They might ask us to calculate eta squared--which is here
equivalent to R-squared--for our entire model. And we can do that
the formula is exactly the same. So, now we know that our entire
model with both factors accounts for about 48% of the variation in
the data.

If we could explain 100% variation, we could perfectly predict car
price. So 48% means we can predict about half the variation while
the rest is explained by other factors we did not include in our
model, like size of car and style of car, as well as error. We
predicted car price using manufacturer and color with a model
assuming that these two factors are independent.

But maybe color has very little effect on the price of cars from less
expensive brands like Toyota, Honda, or Chevrolet, whereas if
you’re getting a fancy Lamborghini, color may have an effect. A lot
of people want that bright orange Lambo. If this were the case, then
these two factors are not independent.

The effect of color depends on which manufacturer made the car.
That’s called an interaction because the two factors interact with
each other. And these interactions can be really important.

Let’s move on from cars and look at how professional and novice
olive oil tasters rate olive oil. You’re opening an olive oil shop.
You’ve already traveled the world in search of the best olives,
you’ve learned how to extract and process the best oil.

But as you’re putting the finishing touches on your storefront and
marketing plan, you run into an issue. You’re not sure how to bottle
your oils. You could shell out a lot of money for very
Instagrammable fancy bottles or save some money and go with a
simpler bottle (letting your oil speak for itself).

Since you’ve been watching Crash Course Statistics, you decide to
run a small experiment. First, you gather two groups of people: olive
oil experts and olive oil novices since those are your two main
customer groups. Then, you give them your delicious olive oil from
both a fancy and a plain bottle, and ask them to rate their overall
impressions.
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Once you collect your data, you conduct a TWO-WAY ANOVA, just
like the one we did earlier. This time, our TWO factors are expertise
and bottle style. Two, hence two-way ANOVA.

But you’re curious to see whether expertise and bottle style
interact. So you add one more thing to your model, the interaction
Term. We won’t dwell on the math here, but this new interaction
term is calculated similarly to all our other terms.

Since there are 4 different combinations of our two factors--expert
with fancy bottle, expert with plain bottle, novice with fancy bottle,
novice with plain bottle-- we calculate the sum of the squared
distance between the mean of each of these 4 groups, and the
overall mean for each point. This is sometimes called the Sums of
Squares Between Groups. Also, SSB - Sums of Squares Between
Groups.

Then from the Sums of Squares Between Groups, we subtract the
sums of squares for each factor in the interaction: expertise and
bottle. Sums of Squares Between Groups tell us how much
variation is explained by coming from one of the four possible
combinations of olive oil expertise and bottle type. When we
subtracted the main effects of Expertise and Bottle Type, we were
left with the amount of variation explained by how these two factors
influence each other.

Here we can seen the means of all four combinations of Expertise
and Bottle Type. This type of plot is called an interaction plot,
because it shows how these two factors interact. The blue line
represents Experts, and the red line, Novices.

You can see that experts rated both bottles of olive oil similarly,
they weren’t swayed by the fancy bottle. But novices rated olive oil
in the fancier bottles higher than olive oil in the simple ones. It
seems like the effect of bottle style on olive oil ratings is different
depending on whether you’re an expert or a novice.

This indicates that there’s an interaction between these two factors.
If there were NO interaction between Expertise and Bottle Type,
we’d expect the red and the blue line to be approximately parallel.
This would tell us that regardless of expertise, bottle type has a
similar effect. (In this case, both prefer the fancy bottle.) But, we’ve
only looked at graphs so far.

Let’s pull up the ANOVA table for this model. Based on our table,
we can see that neither Expertise alone, nor Bottle Type alone are
significant but their interaction is. When we look at how Experts rate
both bottle types, and Novices rate both bottle types, we can see a
clear difference, represented by the different slopes of our red and
blue lines.

And just like before, we can take our significant effects and
calculate an effect size for them, so that we can see how practically
significant it is. In this case, the amount of variation in our data due
to the interaction between expertise and bottle type. To get effect
size, we just divide by the total variation.

In our last example, we talked about eta squared, which is one way
to calculate effect sizes for ANOVAs, and is analogous to the R^2
formula we talked about for regression. To calculate eta squared,
you just take the Sums of Squares for your desired effect, and
divide by the total sums of squares. In this case, the interaction
effect of bottle type and expertise accounts for about 9.14% of the
total variation in the data.

Effect sizes tell you something about the magnitude of an effect, but
it’s up to you--or whoever is analyzing the data--to decide whether
an effect of that size is useful. In our model, we only had one
significant effect: the interaction. But occasionally we’ll see other

significant effects.

Single variables, like Bottle Type and Expertise, are called main
effects. Statistically significant main effects are important, but when
you interpret them, you need to do so with caution. For example, if
we looked at a study of an allergy medication, we might observe a
significant main effect of medication on allergy symptoms.

Which means that on average, people who took the medication had
less severe symptoms than those who didn’t take it. But, we also
recorded whether or not the subjects had a certain allergy related
gene, gene Y. It turns out that there’s a significant interaction
between allergy medication and whether or not you have gene Y.

If you DO have gene Y, the medication doesn’t work that well. In
fact, you’ll feel about the same. But if you DON’T have gene Y, it
works incredibly well all of a sudden your sneezes are gone!

If you told everyone that this allergy medication worked….it wouldn’t
quite be the whole truth. That significant interaction told us that
while on average people displayed fewer symptoms on the
medication, that allergy relief is different depending on whether you
have gene Y. The different slopes for each of our lines in this
interaction plot demonstrate how the two groups respond differently.

Back to your olive oil shop. Looking at the data you have--seems
like you should go with the fancy bottles. The experts won’t be
swayed but the rest of your customers will like all the
embellishment.

And there’s only a couple olive oil professionals in your town.
People, cells, animals, and pretty much anything we might be
interested in measuring, are parts of multiple groups. So it’s
important to have the tools to consider multiple groups together with
a statistical model.

They allow us to have a richer understanding of how certain things
might interact. Like your gender and your ethnicity and your pay. Or
your age and generation and favorite Slurpee flavor.

Thanks for watching, I’ll see you next time.
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