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Hi, I’m Adriene Hill, and Welcome back to Crash Course Statistics.

We ended the last episode by talking about Conditional
Probabilities which helped us find the probability of one event, given
that a second event had already happened. But now I want to give
you a better idea of why this is true and how this formula--with a few
small tweaks--has revolutionized the field of statistics.

INTRO In general terms, Conditional Probability says that the
probability of an event, B, given that event A has already happened,
is the probability of A and B happening together, Divided by the
probability of A happening - that’s the general formula, but let’s
give you a concrete example so we can visualize it. Here’s a Venn
Diagram of two events, An Email containing the words “Nigerian
Prince” and an Email being Spam. So I get an email that has the
words “Nigerian Prince” in it, and I want to know what the
probability is that this email is Spam, given that I already know the
email contains the words “Nigerian Prince.” This is the equation.

Alright, let’s take this part a little. On the Venn Diagram, I can
represent the fact that I know the words “Nigerian Prince” already
happened by only looking at the events where Nigerian Prince
occurs, so just this circle. Now inside this circle I have two areas,
areas where the email is spam, and areas where it’s not.

According to our formula, the probability of spam given Nigerian
Prince is the probability of spam AND Nigerian Prince which is this
region... where they overlap…divided by Probability of Nigerian
Prince which is the whole circle that we’re looking at. Now...if we
want to know the proportion of times when an email is Spam given
that we already know it has the words “Nigerian Prince”, we need
to look at how much of the whole Nigerian Prince circle that the
region with both Spam and Nigerian Prince covers. And actually,
some email servers use a slightly more complex version of this
example to filter spam.

These filters are called Naive Bayes filters, and thanks to them, you
don’t have to worry about seeing the desperate pleas of a
surprisingly large number of Nigerian Princes. The Bayes in Naive
Bayes comes from the Reverend Thomas Bayes, a Presbyterian
minister who broke up his days of prayer, with math. His largest
contribution to the field of math and statistics is a slightly expanded
version of our conditional probability formula.

Bayes Theorem states that: The probability of B given A, is equal to
the Probability of A given B times the Probability of B all divided by
the Probability of A You can see that this is just one step away from
our conditional probability formula. The only change is in the
numerator where P(A and B) is replaced with P(A B)P(B).

While the math of this equality is more than we’ll go into here, you
can see with some venn-diagram-algebra why this is the case. In
this form, the equation is known as Bayes’ Theorem, and it has
inspired a strong movement in both the statistics and science
worlds. Just like with your emails, Bayes Theorem allows us to
figure out the probability that you have a piece of spam on your
hands using information that we already have, the presence of the
words “Nigerian Prince”.

We can also compare that probability to the probability that you just
got a perfectly valid email about Nigerian Princes. If you just tried to
guess your odds of an email being spam based on the rate of spam
to non-spam email, you’d be missing some pretty useful
information--the actual words in the email! Bayesian statistics is all
about UPDATING your beliefs based on new information.

When you receive an email, you don’t necessarily think it’s spam,
but once you see the word Nigerian you’re suspicious. It may just
be your Aunt Judy telling you what she saw on the news, but as

soon as you see “Nigerian” and “Prince” together, you’re pretty
convinced that this is junkmail. Remember our Lady Tasting Tea
example... where a woman claimed to have superior taste buds
...that allowed her to know--with one sip--whether tea or milk was
poured into a cup first?

When you’re watching this lady predict whether the tea or milk was
poured first, each correct guess makes you believe her just a little
bit more. A few correct guesses may not convince you, but each
correct prediction is a little more evidence she has some weird
super-tasting tea powers. Reverend Bayes described this idea of
“updating” in a thought experiment.

Say that you’re standing next to a pool table but you’re faced away
from it, so you can’t see anything on it. You then have your friend
randomly drop a ball onto the table, and this is a special, very even
table, so the ball has an equal chance of landing anywhere on it.
Your mission--is to guess how far to the right or left this ball is.

You have your friend drop another ball onto the table and report
whether it’s to the left or to the right of the original ball. The new
ball is to the right of the original, so, we can update our belief about
where the ball is. If the original is more towards the left, than most
of the new balls will fall to the right of our original, just because
there’s more area there.

And the further to the left it is, the higher the ratio of new rights to
lefts Since this new ball is to the right, that means there’s a better
chance that our original is more toward the left side of the table than
the right, since there would be more “room” for the new ball to land.
Each ball that lands to the right of the original is more evidence that
our original is towards the left of the table. But, if we get a ball
landing on the left of our original, then we know the original is not at
the very left edge.

Again, Each new piece of information allows us to change our
beliefs about the location of the ball, and changing beliefs is what
Bayesian statistics is all about. Outside thought experiments,
Bayesian Statistics is being used in many different ways, from
comparing treatments in medical trials, to helping robots learn
language. It’s being used by cancer researchers, ecologists, and
physicists.

And this method of thinking about statistics...updating existing
information with what’s come before...may be different from the
logic of some of the statistical tests that you’ve heard of--like the t-
test. Those Frequentist statistics can sometimes be more like
probability done in a vacuum. Less reliant on prior knowledge.

When the math of probability gets hard to wrap your head around,
we can use simulations to help see these rules in action.
Simulations take rules and create a pretend universe that follows
those rules. Let’s say you’re the boss of a company, and you
receive news that one of your employees, Joe, has failed a drug
test.

It’s hard to believe. You remember seeing this thing on YouTube
that told you how to figure out the probability that Joe really is on
drugs given that he got a positive test. You can’t remember exactly
what the formula is...but you could always run a simulation.

Simulations are nice, because we can just tell our computer some
rules, and it will randomly generate data based on those rules. For
example, we can tell it the base rate of people in our state that are
on drugs, the sensitivity (how many true positives we get) of the
drug test... and specificity (how many true negatives we get). Then
we ask our computer to generate 10,000 simulated people and tell
us what percent of the time people with positive drug tests were
actually on drugs.
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If the drug Joe tested positive for--in this case Glitterstim--is only
used by about 5% of the population, and the test for Glitterstim has
a 90% sensitivity and 95% specificity, I can plug that in and ask the
computer to simulate 10,000 people according to these rules. And
when we ran this simulation, only 49.2% of the people who tested
positive were actually using Glitterstim. So I should probably give
Joe another chance...or another test.

And if I did the math, I’d see that 49.2% is pretty close since the
theoretical answer is around 48.6%. Simulations can help reveal
truths about probability, even without formulas. They’re a great way
to demonstrate probability and create intuition that can stand alone
or build on top of more mathematical approaches to probability.

Let’s use one to demonstrate an important concept in probability
that makes it possible to use samples of data to make inferences
about a population: the Law of Large Numbers. In fact we were
secretly relying on it when we used empirical probabilities--like how
many times I got tails when flipping a coin 10 times--to estimate
theoretical probabilities--like the true probability of getting tails. In its
weak form, Law of Large Numbers tells us that as our samples of
data get bigger and bigger, our sample mean will be ‘arbitrarily’
close to the true population mean.

Before we go into more detail, let’s see a simulation and if you
want to follow along or run it on your own - instructions are in the
description below. In this simulation we’re picking values from a
new intelligence test--from the normal distribution, that has a mean
of 50 and a standard deviation of 20. When you have a very small
sample size, say 2, your sample means are all over the place.

You can see that pretty much anything goes, we see means
between 5 and 95. And this makes sense, when we only have two
data points in our sample, it’s not that unlikely that we get two
really small numbers, or two pretty big numbers, which is why we
see both low and high sample means. Though we can tell that a lot
of the means are around the true mean of 50 because the
histogram is the tallest at values around 50.

But once we increase the sample size, even to just 100 values, you
can see that the sample means are mostly around the real mean of
50. In fact all of the sample means are within 10 units of the true
population mean. And when we go up to 1000, just about every
sample mean is very very close to the true mean.

And when you run this simulation over and over, you’ll see pretty
similar results. The neat thing is that the Law of Large numbers
applies to almost any distribution as long as the distribution doesn’t
have an infinite variance. Take the uniform distribution which looks
like a rectangle.

Imagine a 100-sided die, every single value is equally probable.
Even the sample means that are selected from a uniform
distribution get closer and closer to the true mean of 50.. The law of
large numbers is the evidence we need to feel confident that the
mean of the samples we analyze is a pretty good guess for the true
population mean.

And the bigger our samples are, the better we think the guess is!
This property allows us to make guesses about populations, based
on samples. It also explains why casinos make money in the long
run over hundreds of thousands of payouts and losses, even if the
experience of each person varies a lot.

The casino looks at a huge sample--every single bet and
payout--whereas your sample as an individual is smaller, and
therefore less likely to be representative. Each of these concepts
can help us another way ...another way to look at the data around
us. The Bayesian framework shows us that every event or data

point can and should “update” your beliefs but it doesn’t mean you
need to completely change your mind.

And simulations allow us to build upon these observations when the
underlying mechanics aren’t so clear. We are continuously
accumulating evidence and modifying our beliefs everyday, adding
today's events to our conception of how the world works. And hey,
maybe one day we’ll all start sincerely emailing each other about
Nigerian Princes.

Then we’re gonna have to do some belief-updating. Thanks for
watching. I’ll see you next time.
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