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Hi, I’m Adriene Hill, and welcome back to Crash Course Statistics.

In many of our episodes we’ve looked at t-tests, which among
other things, are good for testing the difference between two
groups. Like people with or without cats.

Families below the poverty line...and families above it. Petri dishes
of cells that are treated with a chemical and those that aren't. But
the world isn’t always so binary.

We often want to compare measurements of MORE than two
groups. Things like ethnicity, medical diagnosis, country of origin, or
job title. So today, we’re going to apply the General Linear Model
Framework we learned in the last episode to test the difference
between multiple groups using a new model called the ANOVA.

INTRO The GLM Framework takes all the information that our data
contain, and partitions it into two piles: information that can be
explained by a model that represents the way we think things work,
and error, which is the amount of information that our model fails to
explain. So let’s apply that to a new model: the ANOVA. ANOVA is
an acronym for ANalysis Of VAriance.

It’s actually very similar to Regression, except we’re using a
categorical variable to predict a continuous one. Like using a soccer
player’s position to predict the number of yards he runs in a game.
Or using highest completed degree to predict a person’s salary,
note that this alone isn’t evidence that getting a degree causes a
higher salary, just that knowing someone’s degree might help
estimate how much they get paid.

Like Regression, the ANOVA builds a model of how the world
works. For example, my model for how many bunnies I’ll see on my
walk into work might be that if it’s raining I’ll see 1 bunny, and if
it’s sunny, I’ll see 5. I walk through a bunny preserve... 1 and 5 are
my predictions for how many bunnies I’ll see, based on whether or
not it’s raining.

Yesterday it rained. And I saw two bunnies! My model predicted 1,
and my error is 1.

And we can represent this model as a sort of Regression where
there are ONLY two possible values that the Variable Weather can
have. 0--if it rains--or 1--if it doesn’t. In this case, expected number
of bunnies on a rainy day is 1 and beta is the difference between
the two means, 5-1 = 4. Which means our ANOVA model looks like
this: In a Regression we did a statistical test of the slope and that’s
what this simple ANOVA is doing too.

Since we assigned rainy days to be coded as 0, and sunny days as
1, the change in the X-direction is just one (1-0). So the slope of this
line is the difference between mean bunny count on sunny days,
five, minus mean bunny count on rainy days, one. This difference of
4 is the change in the Y direction.

We test this difference in the same way that we tested the
regression slope. And this slope tells us the difference between the
means of the two groups. Usually we’ll like to think of this slope as
the difference between two group means.

But, knowing that our model treats it like a slope helps us
understand how ANOVAs relate to regression. In a regression the
slope tells you how much an increase in one unit of X affects Y.
Like for example, how much an increase of 1 year increases shoe
size in kids.

An ANOVA actually does the same thing. It looks at how much an
increase from 0 (rainy days) to 1 (non-rainy days) affects the
number of bunnies you’d see. Now...to another example.

Let’s look at the ratings of various chocolate bars based on the
type of cocoa bean used. We’ll use a data-set you can find at
Kaggle.com courtesy of Brady Brelinski. Our three groups are
chocolate bars made with Criollo beans, Forastero beans, or
Trinitario beans.

Chocolate making is complex, so we took a small sample of bars
that only contained 1 of these three beans. And the chocolate taster
used a scale--with 5 as the highest score --transcending beyond the
ordinary limits. 1 was “mostly unpalatable”... But is there really
“mostly unpalatable” chocolate out there?

We want to know if the type of bean affects our taster’s ratings. To
find out, we need the ANOVA model! Like Regression, we can
calculate a Sums of Squares Total by adding up the squared
differences between each chocolate rating, and the overall mean
chocolate rating.

This gives us our Sums of Squares Total, or SST. If that sounds like
how we calculated variance, that’s because it is! SST is just N
times Variance.

This Sum represents the total amount of variation, or information, in
the data. Now, we need to partition this variation. When we
previously used a simple linear regression model, we partitioned
this variation into two parts: Sums of Squares for Regression, and
Sums of Squares for Error.

And the ANOVA does the same thing. The first step is to figure out
how much of the variation is explained by our model. In an
ANOVA--what we’re using here--our best guess of a chocolate
bar’s rating is its group mean.

For bars made with Criollo beans 3.1, Forastero beans 3.25, and
Trinitario beans 3.27. So we sum up the squared distances
between each point and its group mean. This is called our Model
Sums of Squares (or SSM) because it’s the variation our model
explains.

So now that we have the amount of variation explained by the
model. In other words, how much variation is accounted for if we
just assumed each rating value were it’s group mean rating. We’re
also going to need the amount of variation that it DOESN’T explain.

In other words, how much ratings vary within each group of Cacao
beans. So, we can sum up the squared differences between each
data point and its group mean to get our Sums of Squares for

Error: the amount of information that our model doesn’t explain.
Now that we have that information, we can calculate our F-statistic,
just like we did for regression. The F-statistic compares how much
variation our model accounts for vs. how much it can’t account for.
The larger that F is, the more information our model is able to give
us about our chocolate bar ratings. Again, SSM is the variation our
model explains and SSE is the variation it doesn’t explain. We want
to compare the two. But we also need to account for the amount of
independent information that each one uses. So, we divide each
Sums of Squares by its degrees of freedom. Our ANOVA model
has 2 degrees of freedom. In general, the formula for degrees of
freedom for categorical variables (like cocoa bean types) in an
ANOVA is k-1, where k is the number of groups. In our case we
have 3 groups. Our Sums of Squares for Error has 787 degrees of
freedom because we originally had 790 data points, but we
calculated 3 means. The general formula for degrees of freedom for
your errors is n minus k where n is the sample size and k is the
number of groups. For our test, we got an F-statistic of 7.7619. This
F-statistic--sometimes called an F-ratio--has a distribution that looks
like this: And we’re going to use this distribution to find our p-value.
We want to know whether the effect of bean type on chocolate bar
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ratings is significant. In this case we have a p-value of 0.000459.
Small enough to reject the null. So we’ve found evidence that
beans influenced the chocolate bar ratings. A statistically significant
result means that there is SOME statistically significant difference
SOMEWHERE in the groups, but it doesn’t tell you where that
difference is. Maybe Trinitario is significantly different from Criollo
but not Forastero beans.. An F-test is an example of an Omnibus
test, which means it’s a test that contains many items or groups.
When we get a significant F-statistic, it means that there’s SOME
statistically significant difference somewhere between the groups,
but we still have to look for it. It’s kinda like walking into your
kitchen and smelling something realllllllly stinky. You know there’s
SOMETHING gross, but you have to do more work to find out
exactly what is rotting... We already have tools to do this, in
statistics at least, because you can follow up a significant F-test in
an ANOVA with multiple t-tests, one for every unique pair of
categories your variable had. We had 3, which means we only need
to do 3 t-tests in order to find the statistically significant difference or
differences. To conduct these T-tests, we take just the data in the
two categories for that t-test, and calculate the t-statistic and p-
value. For our first t-test we just look at the bars with Trinitario and
Criollo beans. First, we follow our Test statistic general formula: We
take the difference between the mean rating of chocolates made
with Trinitario and Criollo beans. And divide by the standard error.
And once we do this for all three comparisons, we can see where
our statistically significant differences are. It looks--from our
graph--like ratings of chocolate bars made with Criollo beans are
different...in a statistically significant way... than those made with
Trinitario or Forastero beans. And our graph and group means
show that Criollo bars have a slightly lower mean rating. But bars
made with Trinitario beans are NOT statistically significantly
different than those made with Forastero beans. So our ANOVA F-
test told us that there WERE some differences, and our follow up t-
tests told us WHERE they were. And this is interesting. Criollo
beans are generally considered a delicacy and of a much higher
quality than Forastero. And Trinitario are hybrid of the two. But we
found...in this data set... that Criollo bars had statistically
significantly lower ratings. This might be because we excluded bars
with combinations of our three bean types...or because the rater
has a different preference...or even be caused by some other
unknown factor that our model does not include. Like who made the
chocolate. Or the country of origin of the beans. We can also use
ANOVAs for more than 3 groups. For example, the ANOVA was
first created by the statistician R. A. Fisher when he was on a
potato farm looking at studies of fertilizer. In one of the first
experiments he described, he looked at 12 different species of
potato and the effect of various fertilizers. Let’s look at a simple
version of Fisher’s potato study. Here we have 12 different
varieties of potato. We’ll represent each of them with a letter A
through L. There are 21 of each of the potato plants, for a total of
252 potato plants. We give our future french fries about a season to
grow, then we dig them up and weigh each one. This graph shows
the potato weights that we recorded, as well as the total mean
potato weight and each group mean potato weight. Using these
numbers, we can calculate our Total Sums of Squares, Model
Sums of Squares, and Sums of Squares error. We’re going to let a
computer do that for us this time. And our computer spit out this: the
degrees of freedom, sums of squares, mean squares, F-statistic,
and p-value. This is called an ANOVA table and it organizes all the
information our ANOVA models give us. Here we can see that our
Model had an F-statistic--or F-value--of around 3, and a p-value of
0.000829. So we reject the null hypothesis. We found evidence that
the potato varieties don’t all have the same mean weight. But since
this was an Omnibus test, our statistically significant F-test just
means that there is some statistically significant difference
somewhere in those 12 potato varieties. We don’t know where it is.
In that way, ANOVAs can be thought of as a first step. We do an
overall test that tells us whether there’s a needle in our haystack. If
we find out there is a needle, then we go looking for it. However, if

our test tells us there’s no needle, we’re done. No need to look for
something that probably doesn’t exist. But you can see that this
significant F-statistic for potato varieties will require MANY follow up
tests. 12 choose 2. Or 66.

We showed a lot of calculations today, but there’s two big ANOVA
ideas to take away from this. First, a lot of these different statistical
models are more similar than they are actually different. ANOVAs
and Regressions both use the General Linear Model form to create
a story about how the world might work. The ANOVA says that the
best guess for a data point--like the rating of a new chocolate
bar--is the mean rating of whatever Group it belongs to. Whether
that’s Criollo, Trinitario , or Forastero. If we don’t know anything
else, we’d guess that the rating of a Criollo chocolate bar is the
mean rating for all Criollo bars. Also, an ANOVA is a great example
of filtering. If there’s no evidence that bean type has an overall
effect on chocolate-bar ratings, we don’t want to go chasing more
specific effects. Our time is precious...and we want to use it as best
as we can. So we have more time out in the world...to look for
bunnies. Thanks for watching, I’ll see you next time.
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